
AFIT/GCS/ENG/97D-14 

A MAMMOGRAPHIC REGISTRATION METHOD BASED ON OPTICAL 

FLOW AND MULTIRESOLUTION COMPUTING 

THESIS 
Kevin A. Lee 
Major, USAF 

AFIT/GCS/ENG/97D-14 

DHC QUALITY XUSFEÜTED 3 

Approved for public release; distribution unlimited 

19980127 068 



The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the Department of Defense or the United States Government. 



AFIT/GCS/ENG/97D-14 

A MAMMOGRAPHIC REGISTRATION METHOD BASED ON 

OPTICAL FLOW AND MULTIRESOLUTION COMPUTING 

THESIS 

Presented to the Faculty of the School of Engineering 

of the Air Force Institute of Technology 

Air University 

In Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science in Computer Science 

Kevin A. Lee, B.S. M.S.S.M 

Major, USAF 

December, 1997 

Approved for public release; distribution unlimited 



AFIT/GCS/ENG/97D-14 

A MAMMOGRAPHIC REGISTRATION METHOD BASED ON 

OPTICAL FLOW AND MULTIRESOLUTION COMPUTING 

Kevin A. Lee, B.S. M.S.S.M 

Major, USAF 

Approved: 

Dr. Martin DeSimio 
Thesis Advis 

^ 
Dr. Steven Rogers 
Committee Member 

Dr. Matthew Kabrisky 
Committee Member     „ / 

6 /v >n 
Date 

6<s/o is°l7 
Date 

/iMsl1) 
Date 

& /fat '. ?7 
Dr. Henry Potoczny ^ Date 
Committee Member 



Acknowledgements 

The last eighteen months have been a journey, sometimes perilous, often exhilarating, 

in pursuit of higher education. This Odyssey would not have been possible—nor as 

meaningful—were it not for the support of many people. I am truly indebted to my 

wonderful wife Deana for her unbounded love, unselfish devotion, and unwaivering 

support throughout the arduous AFIT experience. Keeping a bustling household 

running smoothly was certainly as demanding and stressful, it not more, than keeping 

up with projects, exams, and research. Thanks for being there. You're the best! 

Would a cruise around the Carribean help express my gratitude? Special thanks to 

my little guy Eric for his understanding when Dad was too busy for that special time 

together we both enjoy so much. 

I was very fortunate for the opportunity to learn from an all-star cast of gifted 

and devoted educators. I appreciate my committee members, Dr. Steve Rogers, Dr. 

Martin DeSimio, Dr. Matthew Kabrisky, and Dr. Henry Potoczny, and my sponsor, 

Maj Jeff Hoffmeister, for their enthusiasm, accessibility and sense of humor. I thank 

Dr. Rogers for getting me fired up about neural networks and information processing 

models a la biology and Dr. DeSimio for his constant encouragement and patience 

when I went charging off to explore something new. I'm thankful to John Keller, 

Randy Broussard, Lern Myers, and Amy Magnus for the many fruitful discussions 

and helpful comments. I'm grateful to my lab mates Fred Baier, Don Cournoyer, 

Ed Fitzgerald, and Brian Reid for making the many hours in front of the computer 

more enjoyable. Many thanks to Jill Leighner for the superb support getting me 

the mammograms I needed for my research. Special thanks to Larry Hutson for his 

self-appointed role as class social engineer. Last, but certainly not least, I would like 

to thank Dan Zambon and Dave Dauk for the superb computer support and their 

patience when I chewed up way too much disk space. Thanks one and all! 

Kevin A. Lee 

ui 



Table of Contents 

Page 

Acknowledgements  iii 

List of Figures     vii 

List of Tables  xiv 

Abstract  xv 

I. Introduction      1 

1.1    Introduction  1 

1.1.1 Background  1 

1.1.2 Problem Statement  1 

1.1.3 Scope     2 

1.1.4 Methodology     3 

1.1.5 Overview      4 

II. Background  5 

2.1 Breast Cancer  5 

2.2 Computer-Aided Diagnosis (CADx)  5 

2.3 Image Processing Methods  6 

2.3.1 Noise Reduction  6 

2.3.2 Image Segmentation     7 

2.4 Registration Methods      7 

2.4.1 Correlation  7 

2.4.2 Fourier Methods     8 

2.4.3 Point Mapping  8 

IV 



Page 

2.4.4    Deformable Models  9 

2.5 Registration Considerations  10 

2.5.1 Feature Selection  10 

2.5.2 Similarity Measure  10 

2.5.3 Search Models  11 

2.5.4 Search Strategy  11 

2.6 Optical Flow  13 

2.6.1 Horn and Schunck Method  14 

2.6.2 Alternative Methods  15 

2.7 Multiscale Methods  16 

2.8 Summary  18 

III.          Methodology  19 

3.1 System Overview  19 

3.2 Preprocessing  22 

3.2.1 Noise Reduction  22 

3.2.2 Normalization  22 

3.3 Global Alignment  22 

3.3.1 Key Factors  24 

3.3.2 Implementation  24 

3.4 Multiscale Decomposition  26 

3.5 Segmentation  28 

3.5.1 Rationale  29 

3.5.2 Breast Extraction  29 

3.5.3 Breast Segmentation  30 

3.6 Optical Flow Computation  42 

3.6.1 Theoretical Background  42 

3.6.2 Algorithm Dynamics  43 

v 



Page 

3.7 Image Warping  44 

3.8 Evaluation  44 

3.9 Summary  45 

IV. Results     48 

4.1 System Testing  48 

4.1.1 Image Preparation  48 

4.1.2 Test Case Generation  48 

4.1.3 Test Case Execution  49 

4.1.4 Test Evaluation  49 

4.2 Mammogram Registration  50 

4.2.1 Experimental Format  50 

4.2.2 Results Format  58 

4.2.3 Registration Case 1  62 

4.2.4 Registration Case 2  67 

4.3 Summary  75 

V. Conclusion  79 

5.1 Summary  79 

5.2 Contributions  81 

5.3 Recommendations  81 

Bibliography  82 

Vita  88 

VI 



List of Figures 
Figure Page 

1. Time sequence of mammograms. (a) Previous screening (b) 

current screening  2 

2. Proposed mammogram registration system  20 

3. Time sequence of mammograms taken during four consecutive 

screenings, (a) First screening (b) second screening (c) third 

screening (d) last screening  21 

4. Mammograms of the same breast taken one year apart. Global 

alignment differences are resolved by applying an affine trans- 

formation to the image in the upper left panel, (a) Previous 

screening (b) Current screening (c) first image after affine ad- 

justment (d) second image unaltered  23 

5. Basic multiresolution pyramid architecture. Levels two and 

three are created by smoothing and decimating by a factor of 

two the level below them  27 

6. Gaussian pyramid generated for source image in Figure 3 [a = 

1.5]. (a) Base image decimated X 4 (b) second tier decimated 

X 8 (c) third tier decimated X 16 (d) fourth tier decimated X 

32  31 

7. Gaussian pyramid generated for target image Figure 3 [a = 1.5]. 

(a) Base image decimated X 4 (b) second tier decimated X 8 

(c) third tier decimated X 16 (d) fourth tier decimated X 32. 32 

8. Laplacian pyramid generated for source image Figure 3 [er = 

1.5]. (a) Base image decimated X 4 (b) second tier decimated 

X 8 (c) third tier decimated X 16 (d) fourth tier decimated X 

32  33 

9. Laplacian pyramid generated for target image Figure 3 [a = 

1.5]. (a) Base image decimated X 4 (b) second tier decimated 

X 8 (c) third tier decimated X 16 (d) fourth tier decimated X 

32  34 

vu 



Figure Page 

10. Binary masks and segmented breast images for two different 

screenings [generated by Kohonen Neural Network], (a) Binary 

mask for previous mammogram (b) binary mask for current 

mammogram (c) previous breast structure extracted from back- 

ground (d) current breast structure extracted from background. 35 

11. Mammograms segmented using a Kohonen Neural Network with 

25 nodes in the competitive layer. Segmentation shows varia- 

tions in image intensity corresponding to regions of different 

density (a) Mammogram from previous screening (b) mammo- 

gram from current screening (c) segmented version of image in 

upper left panel (d) segmented version of image in upper right 

panel  36 

12. Comparison of Kohonen and Fuzzy C-Means (FCM) segmen- 

tation methods. Source and target mammogram images are 

segmented into 8 regions using single level, (a) Source image 

segmented with Kohonen method (b) target image segmented 

with Kohonen method (c) source image segmented with FCM 

method (d) target image segmented with FCM  37 

13. Comparison of Kohonen and Fuzzy C-Means (FCM) segmen- 

tation methods. Source and target mammogram images are 

segmented into 8 regions using two-level pyramid, (a) Source 

image segmented with Kohonen method (b) target image seg- 

mented with Kohonen method (c) source image segmented with 

FCM method (d) target image segmented with FCM  38 

14. Comparison of Kohonen and Fuzzy C-Means (FCM) segmen- 

tation methods. Source and target mammogram images are 

segmented into 8 regions using three-level pyramid, (a) Source 

image segmented with Kohonen method (b) target image seg- 

mented with Kohonen method (c) source image segmented with 

FCM method (d) target image segmented with FCM  39 

vin 



Figure Page 

15. Comparison of Kohonen and Fuzzy C-Means (FCM) segmen- 

tation methods. Source and target mammogram images are 

segmented into 8 regions using four-level pyramid, (a) Source 

image segmented with Kohonen method (b) target image seg- 

mented with Kohonen method (c) source image segmented with 

FCM method (d) target image segmented with FCM  40 

16. Comparison of Kohonen and Fuzzy C-Means (FCM) segmen- 

tation methods. Source and target mammogram images are 

segmented into 8 regions using five-level pyramid, (a) Source 

image segmented with Kohonen method (b) target image seg- 

mented with Kohonen method (c) source image segmented with 

FCM method (d) target image segmented with FCM  41 

17. Optical Flow Pyramid: Decomposition of the optical flow esti- 

mate into four levels. The calculated flow at level k +1 becomes 

the initial estimate for refining the estimate at level k. (a) Bot- 

tom level (finest resolution) (b) second level (c) third level (d) 

top most level (coarsest resolution)  46 

18. Residual error at two levels of the Gaussian pyramid [Y com- 

ponent only], (a) Residual computed at level two (b) residual 

computed at level three  47 

19. Comparison of two optical flow computation methods for im- 

age translation test case, (a) Original image (b) original image 

shifted to the right by 5 pixels (c) Horn and Schunck gradient 

method (d) Hwang and Lee multiresolution method  51 

20. Comparison of two optical flow computation methods for im- 

age translation test case, (a) Original image (b) original image 

shifted down by 5 pixels (c) Horn and Schunck gradient method 

(d) Hwang and Lee multiresolution method  52 

21. Comparison of two optical flow computation methods for image 

rotation test case, (a) Original image (b) original image rotated 

counterclockwise by 10 degrees (c) Horn and Schunck gradient 

method (d) Hwang and Lee multiresolution method  53 

IX 



Figure Page 

22. Comparison of two optical flow computation methods for im- 

age translation and rotation test case, (a) Original image (b) 

original image shifted down by 5 pixels (c) Horn and Schunck 

gradient method (d) Hwang and Lee multiresolution method. 54 

23. Comparison of two optical flow computation methods for image 

with box superimposed, (a) Original image (b) original image 

shifted down by 5 pixels (c) Horn and Schunck gradient method 

(d) Hwang and Lee multiresolution method  55 

24. Comparison of two optical flow computation methods for image 

contour tracking, (a) Original image (b) original image shifted 

down and to the right by 10 pixels (c) Horn and Schunck gra- 

dient method (d) Hwang and Lee multiresolution method. . . 56 

25. Comparison of computed optical flow with true optical flow, (a) 

Source image (b) target image (c) actual optical flow field (d) 

computed optical flow field using Hwang and Lee multiresolu- 

tion method  57 

26. Temporal sequence of four mammograms taken during differ- 

ent screenings. These images are used for individual two-image 

matches in the next three case studies. All images are cranio- 

caudal views of the left breast. The sequence (a)-(d) represents 

the order in which the mammograms were taken, with (a) being 

the earliest and (d) being the latest  59 

27. Gaussian pyramid constructed from original mammogram [<r=1.5] . 

(a) Base image decimated X 4 (b) second tier decimated X 8 

(c) third tier decimated X 16 (d) fourth tier decimated X 32. 60 

28. Laplacian pyramid constructed from original mammogram [(7=1.5]. 

(a) Base image decimated X 4 (b) second tier decimated X 8 

(c) third tier decimated X 16 (d) fourth tier decimated X 32. 61 



Figure Page 

29. Case 1.1 Registration of two mammograms taken at different 

times [craniocaudal view]. The optical flow field shown corre- 

sponds to level 2 of the Gaussian pyramid to facilitate viewing 

(a) Mammogram from previous screening (b) mammogram from 

current screening (c) optical flow field calculated from source 

image [in upper left panel] to target image [upper right panel] 

(d) mammogram from current screening  63 

30. Case 1.1 Laplacian images of the warped and target images, (a) 

Source image (b) target image (a) warped image from source (b) 

target image  64 

31. Case 1.2 Registration of two mammograms taken at different 

times [craniocaudal view]. The optical flow field shown corre- 

sponds to level 2 of the Gaussian pyramid to facilitate viewing 

(a) Mammogram from previous screening (b) mammogram from 

current screening (c) optical flow field calculated from source 

image [in upper left panel] to target image [upper right panel] 

(d) mammogram from current screening  65 

32. Case 1.2 Laplacian images of the warped and target images, (a) 

Source image (b) target image (a) warped image from source (b) 

target image  66 

33. Case 1.3 Registration of two mammograms taken at different 

times [craniocaudal view]. The optical flow field shown corre- 

sponds to level 2 of the Gaussian pyramid to facilitate viewing 

(a) Mammogram from previous screening (b) mammogram from 

current screening (c) optical flow field calculated from source 

image [in upper left panel] to target image [upper right panel] 

(d) mammogram from current screening  68 

34. Case 1.3 Laplacian images of the warped and target images, (a) 

Source image (b) target image (a) warped image from source (b) 

target image  69 

XI 



Figure Page 

35. Temporal sequence of four mammograms taken during differ- 

ent screenings. These images are used for individual two-image 

matches in the next three case studies. All images are medial- 

lateral oblique views of the left breast. The sequence (a)-(d) 

represents the order in which the mammograms were taken, 

with (a) being the earliest and (d) being the latest  70 

36. Case 2.1 Registration of two mammograms taken at different 

times [mediolateral oblique view]. The optical flow field shown 

corresponds to level 2 of the Gaussian pyramid to facilitate 

viewing (a) Mammogram from previous screening (b) mammo- 

gram from current screening (c) optical flow field calculated 

from source image [in upper left panel] to target image [upper 

right panel] (d) mammogram from current screening  71 

37. Case 2.1 Laplacian images of the warped and target images, (a) 

Source image (b) target image (a) warped image from source (b) 

target image  72 

38. Case 2.2 Registration of two mammograms taken at different 

times [mediolateral oblique view]. The optical flow field shown 

corresponds to level 2 of the Gaussian pyramid to facilitate 

viewing (a) Mammogram from previous screening (b) mammo- 

gram from current screening (c) optical flow field calculated 

from source image [in upper left panel] to target image [upper 

right panel] (d) mammogram from current screening  73 

39. Case 2.2 Laplacian images of the warped and target images, (a) 

Source image (b) target image (a) warped image from source (b) 

target image  74 

40. Case 2.3 Registration of two mammograms taken at different 

times [mediolateral oblique view]. The optical flow field shown 

corresponds to level 2 of the Gaussian pyramid to facilitate 

viewing (a) Mammogram from previous screening (b) mammo- 

gram from current screening (c) optical flow field calculated 

from source image [in upper left panel] to target image [upper 

right panel] (d) mammogram from current screening  76 

xn 



Figure Page 

41. Case 2.3 Laplacian images of the warped and target images, (a) 

Source image (b) target image (a) warped image from source (b) 

target image  77 

Xlll 



List of Tables 
Table Page 

1. The six affine parameters encoded as genes in each chromosome. 25 

2. Genetic algorithm execution parameters  25 

3. Kohonen extraction network parameters  29 

4. Kohonen segmentation network parameters  30 

5. Specifications for the six validation test cases  49 

6. Summary of registration statistics. The first the difference be- 

tween original image pair. The second is the between source 

image and warped image. The third is the difference between 

warped image and target image.   All difference measures are 

sum of squares  78 

xiv 



AFIT/GCS/ENG/97D-14 

Abstract 

Breast cancer is second only to lung cancer as the most prevalent form of can- 

cer to afflict women—remaining the leading cause of cancer death in women between 

the ages of 40 and 55. Mammography is a potent weapon in the fight against this 

lethal disease, due in large part to its widespread availability and low cost. Despite 

the fact that mammography can detect small lesions as early as two years before they 

become palpable on physical exam, between 10 and 30 percent of cancerous lesions 

go undetected during evaluation by the radiologist. One approach to improving de- 

tection rates involves comparing mammograms of the same breast from successive 

years. Since most forms of breast cancer develop slowly, multiple-view techniques 

might be able to detect subtle changes indicative of cancerous growth. This thesis 

proposes a computer-aided system designed to bring two images into correspondence, 

or alignment, so that they can be compared and evaluated for possible abnormalities. 

The system estimates a mapping between two images by calculating the optical flow, 

or apparent intensity change, between a source and target mammogram. The effi- 

ciency of the proposed registration system is enhanced by utilizing a multiresolution 

approach whereby images are compared at more than one scale. In contrast to other 

registration attempts which match sets of morphological features, this system does 

not require the identification of any control points at all. This advantage permits 

the system to perform well even when the two images differ significantly from one 

another. Preliminary results suggest the potential usefulness of this system as part 

of a clinical computer-aided detection (CADx) system. 

xv 



A MAMMOGRAPHIC REGISTRATION METHOD BASED ON 

OPTICAL FLOW AND MULTIRESOLUTION COMPUTING 

/.   Introduction 

1.1   Introduction 

1.1.1 Background. According to the American Cancer Society, breast can- 

cer is second only to lung cancer as the most prevalent form of cancer to afflict 

women, but remains the leading cause of cancer death in women between the ages 

of 40 and 55. To put this problem in perspective, this year approximately 180,000 

women will be diagnosed with breast cancer, while in the same period some 44,000 

more women will lose the fight against this deadly disease (60). Computer-aided 

detection (CADx) technologies hold great promise in the effort to improve early 

detection of breast cancer. This thesis explores the potential of analyzing mammo- 

grams taken at different times to identify changes which may be the harbingers of 

cancerous growth. 

1.1.2 Pro blem Statement. Radiologists typically compare the current mam- 

mogram with x-ray images taken previously in hopes of detecting changes indicating 

possible cancerous tissue growths. Figure 1 shows a sequence of two mammograms 

taken at screenings two years apart. Today practitioners rely, for the most part, on 

visual inspection to detect possible abnormal growth patterns. Locating a region 

on one image corresponding to a region of interest on another image is essentially a 

judgment call. This subjective practice is both time consuming and error prone. 

A system able to perform autonomous image-to-image matching would free 

the radiologist to concentrate on the most important tasks—image analysis and 
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Figure 1     Time sequence of mammograms.    (a) Previous screening (b) current 
screening. 

interpretation. It could suggest the best match and let the radiologist decide the 

acceptability of the match. The ultimate goal, of course, is to make the system 

smart enough to participate in the change detection process itself, improving the 

radiologist's ability to catch the cancer at a very early stage. 

1.1.3   Scope. This thesis will develop an accurate, reliable method for 

registering a time series of mammograms. Although in principle any number of 

images can be brought into a common alignment, this thesis will concentrate on 

a sequence of two images. Specifically, the matching will be constrained to two 

images of the same breast taken at different times. The registration method will not 

support bi-lateral comparisons of the left and right breasts. The algorithm will be 

based solely on optical flow approaches. 

The registration scheme will interface seamlessly with other image analysis 

activities. The registration procedure is not an end in itself; rather, it is merely 

one of many preprocessing activities. The driving force behind the development of 



registration techniques is the need to detect cancer-induced tissue changes as early 

as possible. Comparing mammograms from the current and previous screenings has 

the potential to detect warning signs long before they would be discovered by single- 

image analysis. With this goal in mind, the registration technique should enhance 

post-registration mammogram analysis as much as possible. 

1.1.4 Methodology. Although a series of mammograms taken from the 

same view (i.e. craniocaudal or mediolateral) exhibit many similarities over time, 

the images may also appear quite different. Certain types of distortion may be traced 

to the imaging equipment, while others can be attributed to the image-taking pro- 

cedure itself. An example of equipment-based distortion is variation in background 

illumination, causing one image to appear brighter than the other. Differences in 

breast compression from one session to the next cause its overall shape to appear 

different. Although care is taken during the mammography session to ensure proper 

alignment of the breast, there is very little the technician can do to ensure exact 

positioning of the breast. 

The complexity of the task makes it clear that there is no silver bullet solution. 

Instead, the synergistic effect of several techniques may make the solution more 

tractable. The method developed here is based on a series of processing stages, each 

trying to further constrain the problem. In particular, the method follows a coarse- 

to-fine approach in which global matching precedes—and indeed enables—matching 

at finer and finer levels of resolution. This approach mitigates the potential for the 

solution to be less than acceptable. 

l.l.^.l Global Alignment. The first problem encountered has to do 

with the orientation problem discussed above. Clearly, the two breasts in the mam- 

mograms must first be aligned to the same relative position and orientation before 

any serious attempt can be made to correspond regions within the breast struc- 

ture.  A simple and effective way to ensure optimal alignment involves identifying 



an appropriate affine transformation from one image to the other. An affine trans- 

formation can be considered a parametric estimate of global, linear differences with 

respect to rotation, translation, and scale (25). The method proposed here solves 

for an optimal set of parameters using a genetic algorithm and realigns the source 

image to the target image based on these values. 

1.1.4.2 Regional Deformation. The affine transformation carried out 

in the previous step does not correct nonlinear deformations such as compression 

and dilation. The approach taken here involves identifying the apparent motion 

(directional change in intensity) between the source and target images. The proposed 

method uses the optical flow as a measure of change between images. The inter-image 

velocity information is then used to deform the source image into an intermediate 

form more closely resembling the target image. The transformation is carried out by 

an appropriate interpolation function. 

1.1.4.3 Local Similarity Assessment. During the registration pro- 

cess, a similarity measure between the transformed source image and the target 

image must be evaluated. In this system, a neural network approach based on 

the Kohonen Self-Organizing Map (SOM) is taken to develop a problem-dependent 

similarity metric. The network learns to segment an image by partitioning it into 

homogeneous regions based on the spatial distribution of image intensity values. A 

traditional subtraction method is also used to measure the similarity between two 

images. 

1.1.5    Overview.     The remaining chapters are organized as follows. Chapter 

II discusses previous and on-going work in the area of image registration. Chapter 

III describes the proposed mammogram registration system. Experimental results 

and conclusions are discussed in Chapters IV and V, respectively. 



II.  Background 

This chapter first motivates the need for registering mammograms from a health care 

perspective. It then discusses several technical aspects of image processing relevant 

to the registration problem. Finally, the major issues involved in registration are 

discussed, highlighting key research in each area. 

2.1 Breast Cancer 

Breast cancer is second only to lung cancer as the leading form of cancer to 

strike women (63). While mammography has proven to be a highly effective tool in 

the early detection of breast cancer, between 10 and 30 percent of cases diagnosed 

as cancer had negative mammogram interpretations. 

2.2 Computer-Aided Diagnosis (CADx) 

Considerable effort is being devoted to the development of automated systems 

capable of assisting the radiologist in mammogram analysis and interpretation (50, 

37, 61). A typical CADx system uses sophisticated image processing techniques to 

detect either microcalcifications or masses which might otherwise go unnoticed. It 

is important to note that these computer-based systems are designed to assist—not 

replace—the trained radiologist. 

Due to the complexity of mammogram interpretation, radiologists base their 

decisions on all available information. In practice, this means comparing all four 

views (craniocaudal and mediolateral oblique for each breast) from the current 

screening and prior screenings. Since most forms of breast cancer develop slowly, 

comparison of mammograms taken at different times can provide evidence of a 

growth not previously detected  (40, 77). 

Although most CADx implementations currently under development or in clin- 

ical test are limited to single image analysis, attempts are underway to develop 



multi-view capable systems (50). Dinten et al. (18) propose a system which com- 

bines analysis from single mammograms with a bilateral comparison between left 

and right mammograms. The primary stumbling stock to the development of these 

CADx systems is the need to register two images before they can be compared and 

analyzed. The variation between two same-breast mammograms taken at different 

times can be enormous, rendering the registration task impractical. For example, 

differences in breast positioning and compression can result in appreciable distortion. 

Until these complications have been resolved, progress in multi-view CADx system 

development will remain slow. 

2.3   Image Processing Methods 

Image processing is often divided into three stages: preprocessing, feature ex- 

traction, and classification (59). Preprocessing consists of low-level techniques de- 

signed to transform the input data into a form useful to the other stages. Feature 

extraction identifies and isolates characteristics (patterns) in the preprocessed data 

based on semantic merit. Finally, extracted features are combined and manipulated 

so that the original problem can be solved. The following subsections examine some 

representative image processing methods most important to solving the registration 

problem. 

2.3.1 Noise Reduction. The useful information conveyed by images is par- 

tially degraded by unwanted signals in the form of noise. Origins of noise include the 

image capturing device (e.g. mammography unit), the subsequent film development 

process, and the digitization of this film for computer analysis. The presence of noise 

may corrupt the image and lessen the radiologist's ability to detect an abnormality 

in the mammogram (39). 

Noise reduction is most often achieved by smoothing the image with one or 

more filters  (28). Although Gaussian filters have found wide support in the image 



analysis community, they have the undesirable property of smoothing over discontin- 

uous as well as continuous areas, possibly removing valuable boundary information 

in the process (2). Saint-Marc et al. propose an adaptive smoothing technique de- 

signed to retain the benefits of Gaussian smoothing while preserving discontinuities 

(60). 

2.3.2 Image Segmentation. Segmentation refers to the process of parti- 

tioning an image into homogeneous regions based on texture, intensity, or any other 

problem-dependent measure. Techniques for segmenting an image can be grouped 

into three general classes: edge detection, thresholding, and region growing (25). 

An important application of this technique involves extracting the breast structure 

from the background image  (5, 13, 34, 48, 53, 69). 

2-4   Registration Methods 

Registration is the process of establishing the best possible correspondence 

between two objects—images in this case. Brown provides an exhaustive survey 

of registration techniques and offers an excellent taxonomy for making sense of the 

many approaches available (9). The following discussion on registration methods 

and characteristics will follow Brown's organizational framework. 

2.4-1 Correlation. Correlation-based, sometimes called block matching, 

techniques attempt to register two images using similarity measures. As Brown 

points out, correlation matching is more a similarity metric than a registration 

method unto its own. Combined with template matching, cross-correlation can pro- 

vide a useful measure of how well a region in the source image spatially matches a 

region in the target image. In the standard block matching method given by 

E({u»Vi}) = £ ||J(p,ti) - I(p + d,t2)\\2 (1) 
p€R 



the error E({ui,Vi}) is minimized over a small image region where {ui,Vi} 

represents the optimum displacement vector  (25). 

Correlation is particularly useful when spatial structure remains relatively con- 

stant between two images. For example, two different aerial photographs taken of 

the same land area fit this criterion. A translational shift in one image relative to the 

other will have no effect on the structure of a given region. However, a relative dif- 

ference in scale between the two images will introduce considerable noise (error) into 

the correlation measurement. Caves (12) demonstrates the effectiveness of template 

matching in registering two land mass images taken by Synthetic Aperture Radar 

(SAR). 

2.4.2 Fourier Methods. Whereas correlation is based on spatial charac- 

teristics, Fourier methods operate in the frequency domain. Calway (11) presents 

a multiresolution Fourier Analysis approach to the problem of estimating dispar- 

ity and motion in image registration. This method is appropriate if the frequency 

components of the image correspond to the actual disparity. 

2.4.3 Point Mapping. Mapping a set of points in a source image to its 

counterpart in a target image is a very powerful registration method if stable corre- 

spondence points can be extracted from each image (54). However, significant vari- 

ations between the two images can make these fiducial markers, or control points, 

very difficult to identify. 

This approach has recently been applied to the registration of two mammo- 

grams with considerable success (72). It should be noted that the images presented 

in (72) have easily identifiable fiducial markers—an exception rather than the rule for 

most mammogram comparisons. Bookstein (8) has shown how this point-to-point 

mapping can be decomposed into its constituent linear and nonlinear components. 

This type of analysis is useful in understanding the displacement forces responsible 

for transforming one image into the other. 



2-4-4 Deformable Models. Deformable models are attracting considerable 

attention in many areas of image processing and computer analysis. Durbin (20) 

demonstrated the power of elastic nets by finding a good solution to the NP-complete 

Traveling Salesman Problem. Also known as snakes, elastic nets, and active contour 

models, these versatile tools offer a fresh perspective to long-standing challenges such 

as scene segmentation, boundary extraction, and image registration. Many of the 

approaches under investigation can trace their roots to the snake model developed by 

Kass et al. (36). These investigators used this one-dimensional deformable model 

to seek out curves in images. The snake is really a spline which reaches its desired 

configuration by minimizing a three-component energy function: 

Esnake = J Esnake{v{s))ds = j  Eint(v{s)) + Eimage(v(s)) + £con(i;(s))ds      (2) 

The first component, the internal energy term, represents the energy stored 

in the deformable model due to bending. The second term, the external energy, 

corresponds to image features. The third component of the energy function allow 

the user to add additional constraints to the solution. 

A number of investigators have applied deformable models to difficult problems 

in medical image analysis. Lobregt et al. (45) use an active contour model to locate 

arteries in vascular x-ray images and tumors in MR images. Ranganath (55), Cohen 

et al (14), and Coppini et al. (15) apply similar approaches to the automatic 

extraction of left ventricle boundaries from cardiac imagery. Yue et al. (75) detect 

rib borders with a snake. A deformable surface model is used by Sandor et al. to 

match MR brain images with a brain atlas. Davatzikos and Prince (16) developed 

a technique for mapping the outer cortex in brain images using deformable ribbons. 



2.5   Registration Considerations 

2.5.1 Feature Selection. The image features selected to guide the regis- 

tration process can dramatically affect the final outcome. Simply stated, features 

which represent the image well should produce a more accurate registration result 

than features less representative of the images. Features can be categorized as either 

structural and statistical in nature. Structural features represent morphological as- 

pects of the image, such as edges and landmarks. Statistical features, on the other 

hand, capture textural properties of the image in the form of intensity variance, mo- 

ments, etc. Structural features are sometimes called intrinsic features because they 

are derived directly from the image. 

2.5.2 Similarity Measure. Closely related to feature selection is the decision 

of how to measure the similarity between two images. Anandan (1) uses a simple 

sum of squared difference (SSD) measure, given by the equation 

E({ui, Vi}) = £ [h(xi + uh yi + vi) - IQ(xi, yi)]2 (3) 
t 

to measure the difference between two image frames. This optimization equa- 

tion can be readily solved by a least squares or other iterative numerical method. 

Rogowska  (56) uses the normalized cross-correlation equation 

NCORij = {Ay-ß^.jR-ri (4) 

y/[(Aij ~ ßAij) • (Aij - HMj)][(R ~ PR) *{R- Hit)] 

to perform a type of dynamic image analysis called similarity mapping between 

two consecutive frames of a dynamic MRI temporal sequence. The author presents 

evidence that this technique can identify different image structures having clinical 

interest. 
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2.5.3 Search Models. Having selected a set of features and similarity mea- 

sure, a search strategy appropriate to the type of registration problem must be 

identified. Specifically, the a transformation model appropriate to the registration 

problem at hand must be selected. The model should match the expected transfor- 

mation as closely as possible. Transformation models typically used by registration 

procedures are fall into one of four families: rigid, affine, projective, or curved (70). 

2.5.3.1 Affine Transformations. The simplest types of transforma- 

tions are affine. An affine transformation is restricted to changes resulting from 

translation, rotation, and shear. Therefore, lines parallel before the transformation 

will remain parallel in the transformed image. The parametric affine model defined 

mathematically by 

u(x,y;a) = 
sxcos9x —SySinOy 

sxsin$x     sycos9y 

X 
+ 

dx 

y dy 
(5) 

will transform each point in the source image to its corresponding location in 

the target image. Fuh (25) use an affine model to estimate the velocity field between 

two frames of an aerial image sequence. 

2.5-4 Search Strategy. The final component to make the registration sys- 

tem complete is the search strategy. This decision is critical because it will decide 

important issues such as registration accuracy and computational resource require- 

ments. 

2.5.4.1 Algorithm-based. Many traditional search strategies are based 

on well-defined algorithms. If the registration problem can be subdivided into smaller 

and smaller subproblems, the matching problem may be amenable to a dynamic 

programming approach. However, the exhaustive nature of dynamic programming 
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algorithms can cause computation time and resource requirements to become pro- 

hibitive. 

2.5.4-2 Relaxation-based. Several researchers have developed opti- 

mization approaches to solve the registration problem. Relaxation methods are typ- 

ically used to propagate local information throughout the system, enabling a more 

accurate global solution. In general, these methods search for an optimal solution by 

minimizing an objective energy function. Comprehensive discussions on relaxation 

techniques and their application to image processing can be found in  (32, 57, 58). 

2.5.4-3 Deterministic Relaxation. Numerical analysis theory offers 

a number of techniques to solve optimization problems through deterministic relax- 

ation (47). Iterative methods, such as the Jacobi, Gauss-Seidel, and simultaneous 

over-relaxation (SOR) variants, gradually converge to a stable minimum (under the 

appropriate conditions). Recently, the Hopfield network has been used to perform 

the optimization task (13, 17, 32, 41, 43, 53, 54, 68, 78). The Hopfield network 

is a fully-connected single-layer neural network which can minimize a cost function 

representing the problem at hand. This architecture lends itself to parallel computer 

implementations. 

2.5.4.4 Stochastic Relaxation. Complementing deterministic relax- 

ation techniques are those based on stochastic processes (24, 26, 49, 69). Geman and 

Geman (26) demonstrate how image restoration problems can be addressed with 

a probabilistic relaxation technique called simulated annealing. This approach can 

avoid local minima by allowing states to be accepted that actually increase the sys- 

tem's energy. The probability that such an energy-increasing state will be tolerated 

is determined by an annealing schedule. Initially set to a high value, the acceptance 

probability (based on a Gibbs distribution) is gradually lowered until finally only 

energy-decreasing states are allowed.  Although very effective at reaching an opti- 
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mal global minimum, simulated annealing methods generally suffer from very slow 

convergence rates compared to other deterministic relaxation methods. 

2.5.4-5 Genetic Algorithms. Genetic algorithms offer a biologically- 

motivated alternative to traditional search approaches. Patterned after DNA repli- 

cation in living creatures, genetic algorithms conduct global searches with the help 

of mutation and crossover of chromosomes (27, 30). These artificial chromosomes 

represent partial solutions to the larger problem to be solved. Over the course of 

several generations, these building blocks are combined so as to evolve an optimal 

solution. Genetic algorithms thrive on search spaces too messy to be solved by more 

structured search strategies. 

2.6   Optical Flow 

The analysis of image sequences requires an understanding of how they differ 

from one another. In the context of image registration, we wish to map a set of 

features in the source image to the corresponding set of features in the target image. 

These features can be intrinsic image structures like contours, or they can be statis- 

tical measures such as contrast, moments, etc. Although several techniques exist to 

estimate this interimage mapping, one approach which has proven extremely useful 

is based on the estimation of optical flow. Luettgen et al. define optical flow as the 

" apparent velocity vector field corresponding to the observed motion of brightness 

patterns in successive image frames"   (46). 

Barron et al. (3) provide a comprehensive survey of optical flow approaches 

and assess nine of the most popular methods in use today. The authors place optical 

flow estimation techniques into four categories: differential, region-based matching, 

energy-based, and phase-based. Differential methods use spatio-temporal deriva- 

tives to estimate a dense velocity field relating the source image to the target image. 

Region-based techniques, on the other hand, rely on similarity measures between 
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features in the image sequence to derive a sparse optical flow field. The third cate- 

gory, energy-based optical flow techniques, apply velocity-tuned filters to produce a 

flow estimate. In a similar vein, phase-based techniques use the outputs of band-pass 

filters to derive the flow estimate. 

2.6.1 Horn and Schunck Method. In many types of image matching, this 

set of consistent features is difficult, if not impossible, to identify. Horn and Schunck 

(31) established the basis for the development of homogeneous differential optical 

flow methods based on image gradient information. Their method is predicated on 

the brightness constancy equation 

dE 
— = Exu + Eyv + Et = Q (6) 

where 

dE(x,y,t) dE(x,y,t) dE{x,y,t) 
Ex=       dx      '^=       dy      >Et=       dt (7) 

represent the image spatial and temporal intensity derivatives and 

(«, v) = (dx/dt, dy/dt) (8) 

denotes the derived optical flow. The brightness constraint assumes that 

"changes in image brightness are due only to motion in the image frame"   (46). 

This single linear equation in two unknowns results in an ill-posed problem, 

requiring more information for an acceptable solution (4). An ill-posed problem 

denotes a solution that is in general neither unique nor stable (76). One well- 

established technique to condition this type of underconstrained problem is to add a 

regularization term. Poggio et al. (52) describe how regularization techniques can be 

used to tame a variety of difficult problems, including optical flow calculations. The 
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regularization term is not constrained to assume a particular form; it simply needs 

to add sufficient information to make the problem well-posed. Horn and Schunck 

(31) attack the problem by incorporating a smoothness constraint, resulting in a 

minimization problem of the form 

$ = / /      (Exu + Eyv + Etf + a2{u2
x + ul + v2

x + v2)dxdy (9) 
J  JImage 

where a represents the regularization parameter (smoothness, in this case). 

This quadratic variational functional can be recast into a set of Euler-Lagrange 

equations of the form 

(Exu + Eyv + Et)Ex = a2Au{Exu + Eyv + Et)Ey = a2Av (10) 

2.6.2 Alternative Methods. Several researchers have proposed modifica- 

tions to the basic Horn and Schunck framework in an attempt to improve accu- 

racy of the optical flow calculation. Black et al. (6, 7) propose a robust estima- 

tion framework designed to minimize the negative effect of violations to the basic 

assumptions—brightness constancy and spatial smoothness. Specifically, they incor- 

porate />-functions, such as the Lorentzian and Geman-McClure variants, to atten- 

uate the influence of outlying measurements on the solution. Optical flow is then 

estimated by minimizing the objective function 

XDp((VI(x)u(x) + It(x)),aD) + j^r-  £  p(\\u(x)-u(z)\\,as) 
\y\.x)\ zeß(X) 

(ii) 

15 



The first term enforces fidelity to image intensity values as determined by the 

control parameter (TD, while the second term regulates smoothness as determined by 

another control parameter as and serves as the regularization parameter. 

Fleet (23) uses local phase information to calculate optical flow, while Fuh 

(25) extracts regional optical flow estimates from the observed affine transformation 

in each region. Nagel and Enkelmann provide an excellent discussion on the role of 

smoothness constraints in optical flow formulations (51). Fan et al. (22) describe 

an image motion estimation method based on the Expectation-Maximization (EM) 

technique and affine transformations. Verri (71) also gives a good discussion on 

motion fields and optical flow computation. Zhang and Hanauer (76) apply the 

concepts of mean field theory to address the optical flow problem. 

2.7   Multiscale Methods 

The notion of multiresolution image analysis is not new. Research efforts into 

new analysis approaches integrating information generated on more than one scale 

have been reported since the mid 1970's (58). Burt (10) introduced the idea of 

a Laplacian pyramid to create a compact image code. Although he developed this 

technique to improve data transmission performance, this multiscale analysis tool 

has found application in the image analysis realm and has been applied to hyper- 

spectral image data fusion (73). The Gaussian kernel is generally preferred because 

"it is the only kernel that leads to monotonic destruction of detail under repeated 

blurring...no new details will appear at a given scale s that did not exist at smaller 

scales" (44). Repeated blurring of the source image defines a continuously-generated 

family of images referred to as scale space. 

Multiscale methods offer levels of analysis and manipulation not generally avail- 

able using single-scale methods. Specifically, they employ coarse-to-fine strategies 

which decompose an image (or sequence of images) into more than one level of 

resolution. This method is extremely useful in image registration because motion, 
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or intensity change between two images, will often be present to different degrees. 

In other words, there might be rapid change at the breast edge along with much 

smaller local change from region to region. Simple optical flow methods (e.g. Horn 

and Schunck) assume a linear intensity change within the measurement area, but 

this assumption is often violated. 

Multiscale methods address this well-known "aperture problem" by looking 

at the problem from different levels of resolution. Using this approach, small in- 

tensity changes can be investigated at fine levels while larger intensity changes can 

be explored at an appropriate level of resolution. For the purpose of optical flow 

calculations, we look for the level at which a given intensity change is linear. This 

hierarchical decomposition ensures that all degrees of motion are analyzed at the 

level appropriate to their magnitude. 

Several investigators have developed optical flow estimation methods based 

on this multiresolution approach (4, 21, 33, 62, 65, 66, 64, 67, 74). Szeliski et al. 

(65, 66, 64) base their methods on a hierarchical family of splines. Battiti et al. 

(4) address the shortcomings of homogeneous differential methods (e.g. Horn and 

Schunck) by estimating the relative error associated with each optical flow calcula- 

tion. An optical flow measurement with error exceeding a specified threshold will be 

recalculated at the next finer level, while those below the threshold (high confidence 

estimates) are retained. In a similar vein, Enkelmann (21) and Hwang (33) also 

estimate the relative error; their approach incorporates the error estimate directly 

into the next calculation iteration. Hwang and Lee (33) apply multigrid techniques 

to their multiresolution pyramid with excellent results. Luettgen et al (46) de- 

velop a multiscale regularization approach for robust optical flow estimation. The 

performance of such multiresolution frameworks can be dramatically improved by 

incorporating true multigrid algorithms that make explicit use of interlevel residual 

errors to speed up the relaxation process. Douglas and Terzopoulos (19, 67) present 

a comprehensive discussion of multigrid techniques for improving convergence rates. 
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2.8   Summary 

Mammography has proven to be a powerful tool in the fight against breast 

cancer. When interpreting mammograms, radiologists normally compare the current 

mammogram set with those taken previously. Researchers are actively developing 

computer-aided detection (CADx) systems capable of helping the radiologist make 

more informed decisions. Much of today's CADx research, however, still focuses 

on the analysis of one image at a time. Although single-view analysis is extremely 

important, a sequence of mammograms contains information about the growth of 

cancer over time. Since most types of breast cancers grow slowly, the simultaneous 

analysis of mammograms spanning more than one year may significantly improve 

the detection of cancers too difficult to identify on a single image. 

A key technology in multiple-image processing is registration—matching loca- 

tions on one image with the corresponding locations on the other. The significant 

differences typically encountered between two images often make registration very 

difficult. In the case of mammography, it's a non-linear problem requiring a non- 

linear solution. Using optical flow techniques to estimate the disparity between two 

images and facilitate registration is not a new idea. However, these powerful tech- 

niques have not as yet been applied to the registration of mammograms. Optical 

flow techniques offer a potentially powerful approach to this complex problem. This 

thesis develops a registration method based on optical flow and explores both the 

advantages and disadvantages of this approach. 
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III.   Methodology 

This chapter describes the proposed mammogram registration system. 

3.1   System Overview 

The mammogram registration system developed in this thesis consists of sev- 

eral modules each designed to perform a specific function. It relies on both ana- 

lytical techniques, such as iterative relaxation, where appropriate, and appeals to 

biologically-motivated methods, such as genetic algorithms and neural networks, 

where they outperform the traditional approaches. It is based on a multiresolu- 

tion hierarchy to facilitate analysis at more than one scale. This approach enables 

the system to deal with registration and tumor detection at the most appropriate 

level(s) of resolution. Prom a philosophical standpoint, this system is designed to 

be an integrated approach to both mammogram registration and tumor detection. 

Specifically, the proposed system uses velocity field estimates between two images to 

simultaneously bring two images into correspondence and identify potential tumor 

growth areas. Figure 2 gives a bird's-eye view of the entire registration system. Fig- 

ure 3 displays a time series of four mammograms for the same woman taken during 

different screenings. The registration system must align these images to help the 

radiologist compare corresponding regions in hopes of detecting a growth if one is 

present. 

The preprocessing module is responsible for low-level data manipulation to en- 

sure both images are as similar as possible. The global alignment module reduces 

differences in position and orientation prior to estimating intensity differences be- 

tween two images. The segmentation module extracts each breast structure from 

the background to help define for the system what to register and what to ignore. 

The multiscale pyramid generator decomposes each image into a specified number 

of scales. The number of levels is not fixed and can be adjusted to meet the current 
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MAMMOGRAM REGISTRATION SYSTEM 

Preprocess 

Global Alignment 

Segment From 
Background 

Construct Pyramid 

Compute Optical 
Flow 

Warp Source Image 

Calculate Similarity 

Figure 2     Proposed mammogram registration system. 
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Figure 3 Time sequence of mammograms taken during four consecutive screen- 
ings, (a) First screening (b) second screening (c) third screening (d) last 
screening. 
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need. The heart of the registration system is the optical flow computation module. 

This module estimates the apparent difference between the two images being reg- 

istered. The warping module takes the output from the optical flow computation 

module and generates a warped image based on the apparent motion from source 

to target image. Finally, the evaluator module measures the similarity between the 

warped image and target image and decides whether the sequence must be repeated. 

The similarity maps generate can be used to evaluate the possibility of abnormal 

growth in the second mammogram. 

3.2 Preprocessing 

3.2.1 Noise Reduction. Noise due to film granularity and introduced by the 

digitization process will always be present in mammogram images. Median filtering 

has been shown to be an effective tool in removing this type of noise. In this system, 

images are filtered using a median filter with a 5 x 5 kernel. 

3.2.2 Normalization. The first problem encountered by any image registra- 

tion process is the variety of differences which may be present in the images. Global 

differences such as background illumination, unequal intensity ranges, and variable 

contrast can impair the registration process significantly. To minimize the effect of 

theses factors, the images are first quantized such that all intensity values fall in the 

range 0 to 255. 

3.3 Global Alignment 

Although care is taken during the mammography session to ensure proper 

positioning of the breast, there is very little that can be done to establish the same 

same alignment between two different mammograms. The registration system will 

simply have to be prepared to deal with this problem in the course of the alignment 

procedure. 
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Figure 4 Mammograms of the same breast taken one year apart. Global alignment 
differences are resolved by applying an affine transformation to the image 
in the upper left panel, (a) Previous screening (b) Current screening (c) 
first image after affine adjustment (d) second image unaltered 
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The images in Figure 4 are mammograms taken of the same breast in two 

different years. Although they show the same structural features, the breast on the 

right (b) is positioned lower relative to the breast on the left and is possibly enlarged. 

It is clear that the two images must be more closely aligned before attempting to 

correct regional deformations (e.g. compression and expansion due to differences in 

patient positioning pressure applied by the imaging equipment) . 

3.3.1 Key Factors. Analytical techniques, such as least squares fitting, 

offer one approach to resolving alignment differences (50). Although these methods 

can perform quite well under most circumstances, they can generate unacceptable 

solutions if the differences between the two images are too great. They are especially 

sensitive to outlier measurements—those falling far outside the acceptable range of 

values. However, it is exactly these types of "messy" situations on which evolutionary 

approaches thrive. As described in the previous chapter, genetic algorithms excel at 

searching through landscapes where rules are few and far between  (27, 30). 

The approach taken here is to model global (mis) alignment as an affine trans- 

formation problem. The rationale for this decision is straightforward: attempting 

to resolve differences due to distortion cannot be done in a meaningful way if the 

images suffer from translational, rotational, and scale differences. Once these linear 

differences have been resolved, the nonlinear distortions become manageable. 

3.3.2 Implementation. The global alignment subsystem uses a genetic 

algorithm to search for an optimal set of transformation parameters. The parameters 

required to specify the affine transformation 

u(x,y;a) = 
sxcos9x —SySinOy 

sxsinßx     SyCosOy 

X 
+ 

dx 

y dy 
(12) 

determine the transformation are sx,sy,9x,6y, dx and dy. The four parameters 

of the rotation matrix, sx,sy,9x,6y, specify the amount of rotation and scaling that 
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will be applied, while the dx and dy terms represent the amount of translation along 

the x and y axes, respectively, required. 

A family of 25 chromosomes, each encoding the six affine parameters, are 

allowed to evolve using crossover and mutation operators. At the end of each gen- 

eration, the genetic algorithm evaluates the fitness of each chromosome using a 

sum-of-squared difference (SSD) function. Specifically, the parameters from each 

chromosome are used to create a new image, and the calculated SSD between this 

image and the target image determine the chromosome's fitness. By minimizing this 

simple SSD function, the genetic algorithm converges to a specified error goal in 

less than 20 generations (in most cases). Table 1 details how the affine parameters 

are encoded in each chromosome, and Table 2 summarizes the genetic algorithm 

parameters execution used by the alignment module. 

Genetic Algorithm Chromosome String 
Parameter Bits Description 

dx 5 Translation in Vertical Direction 
dy 5 Translation in Horizontal Direction 
°x 4 Scaling Ratio for Vertical Direction 
Sy 4 Scaling Ratio for Horizontal Direction 
0X 4 Rotation Angle X 
dy 4 Rotation Angle Y 

Table 1     The six affine parameters encoded as genes in each chromosome. 

Genetic Algorithm Parameters 
Parameter Value 

Chromosome Length (bits) 26 
Population Size 25 
Mutation Rate 0.25 
Crossover Rate 0.9 

Table 2     Genetic algorithm execution parameters. 
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3.4   Multiscale Decomposition 

This registration system relies on a hierarchy of images to achieve the most ac- 

curate registration result while minimizing the overall processing requirement. Since 

intensity differences between image segments can be substantial, more than one 

level will generally be required. The general rule of thumb states that the inter- 

frame velocity should not exceed one pixel per frame for an accurate optical flow 

measurement (10). This system allows a maximum of six levels, depending upon 

the degree of variation between the two images. Figure 5 depicts the basic pyramid 

structure. 

The higher levels are all created by smoothing and decimation operations. To 

obtain a new image at level k + 1, the image at level k is convolved with the 2-D 

Gaussian smoothing operator over a 3 x 3 window using the equation 

'(*, v) = jf E E A* + h y+j)e=i&h (is) 

where 

N= E  E/(* + i,j/ + j) (14) 
t=-ij=-i 

and a is a scale constant. The smoothed image is then decimated by a factor 

of two in each dimension, resulting in an image having one fourth the area of the 

image one level below. Figures 6 and 7 depict a five-tier pyramid generated from 

the example source and target images, respectively. Each level is magnified to full 

base size for ease of viewing. The axes show the actual dimensions of each frame. 

The full power of a hierarchical representation can be appreciated if we view it 

as the corresponding Laplacian pyramid. Burt (10) developed the Laplacian pyramid 

scheme to improve the transmission speed of images. We can convert the Gaussian 

pyramid described above to its Laplacian counterpart by recursively subtracting from 
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Figure 5 Basic multiresolution pyramid architecture. Levels two and three are 
created by smoothing and decimating by a factor of two the level below 
them. 

27 



the Gaussian image at level k from the one on the level k +1. Figures 8 and 9 show 

the Laplacian pyramids corresponding to the Gaussian pyramids in Figures 6 and 

7, respectively. 

Projection operators are needed to transform pixel values to the appropriate 

values on adjacent levels. This system uses the averaging operator 

Fk     "16 

12 1 

2 4 2 

1     2     1 

(15) 

and interpolation operator 

p*    _ x 

1 2      1 

2 4     2 

1     2      1 

(16) 

employed by Hwang and Lee (33) in their three-tier Gaussian pyramid imple- 

mentation. 

3.5   Segmentation 

After the two images have been brought into coarse alignment by minimizing 

the translational, rotational, and scale differences between them and the multiresolu- 

tion pyramid has been constructed, it useful to segment the images. In this system, 

two types of segmentation are implemented: breast structure extraction and internal 

structure partitioning. The first procedure extracts the region of the image belonging 

to the breast image away from the surrounding background. This step ensures that 

later processing stages are matching breast tissue rather than attempting to match 

pixels belonging to the background region. 
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3.5.1    Rationale. As discussed in Chapter II, the three most common 

segmentation philosophies are based on either edge detection, region growing or 

thresholding techniques. The method selected for this system belongs to the second 

group of methods because it segments the image by clustering similar pixels into 

homogeneous partitions. Since the segmentation activity should operate without 

the need for outside intervention, an unsupervised method would seem like the best 

choice. The Kohonen self-organizing feature map (SOM) is a neural network based on 

unsupervised learning (38). The SOM uses vector quantization to discover patterns 

in the input data. The Kohonen SOM is unique among neural networks in that 

it creates a topographical map of the input space. In other words, patterns close 

together in the input space will remain close to one another in the feature map as 

well. The SOM map has many of the same characteristics of maps found in biological 

information processing systems. 

This thesis extends the previous method by introducing a multiresolution com- 

ponent. Each image is transformed into a deck of images smoothed by a different 

Gaussian scale factor. The pattern vector associated with a given image pixel con- 

sists of elements representing the pixel intensity at each scale. 

Kohonen Extraction Network 
Parameter Value 

Pattern Vector Length (pixels) 25 
Competitive Layer Nodes 2 

Iterations 10000 
Update Mode Batch 

Table 3     Kohonen extraction network parameters. 

3.5.2   Breast Extraction. Lee (42) demonstrated how a Kohonen self- 

organizing feature map (SOM) can effectively partition a mammogram using a com- 

petitive learning paradigm. First, a preprocessing stage extracts small pixel neigh- 

borhoods by sliding a 5 x 5 window in raster fashion from left to right, top to bottom. 

These neighbor pixel regions are small enough to characterize homogeneous areas, 
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Kohonen Segmentation Network 
Parameter Value 

Pattern Vector Length (pixels) 5 
Competitive Layer Nodes 25 

Iterations 10000 
Update Mode Batch 

Table 4     Kohonen segmentation network parameters. 

yet large enough to ensure the data is statistically valid. Figure 10 demonstrates the 

extraction capability of this segmentation technique. Each of the two nodes in the 

competitive layer of the network encode either is-breast or is-background based on 

the neighbor intensity values. 

3.5.3 Breast Segmentation. This thesis proposes a novel technique for seg- 

menting the internal structure of mammogram images. As with the breast extraction 

procedure described above, this method also uses a Kohonen neural network. This 

method, however, differs from the other in that it uses information from the multires- 

olution pyramid generated in the previous processing step. Specifically, an n-level 

image deck is created in which each level is smoothed using a successively larger scale 

parameter (typically following a geometric progression). Then an n-dimensional fea- 

ture vector composed of pixel values from each level is defined for each pixel in the 

original image. Since each successive Gaussian image is a low-pass version of the im- 

age below it, pixel values at coarser levels will be more resistant to noise than those 

on lower levels. A segmentation based on multiple pixel values should in principle 

produce a partition that identifies more or less homogeneous regions in the image: 

the addition of more levels to the image deck will increase the smoothness of the par- 

titioning. Figure 11 shows the example source and target images after segmentation 

by the Kohonen neural segmentation procedure. Figures 12 through 16 compare the 

performance of the proposed Kohonen-based segmenter with the well-known fuzzy 

c-means clustering algorithm using successively more pyramid levels. Fuzzy c-means 

clustering is described in detail in (29, 35). 

30 



Gaussian Pyramid [level two] Gaussian Pyramid [level three] 
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Figure 6 Gaussian pyramid generated for source image in Figure 3 [a = 1.5]. (a) 
Base image decimated X 4 (b) second tier decimated X 8 (c) third tier 
decimated X 16 (d) fourth tier decimated X 32. 
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Gaussian Pyramid [level two] Gaussian Pyramid [level three] 
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Figure 7 Gaussian pyramid generated for target image Figure 3 [a = 1.5]. (a) 
Base image decimated X 4 (b) second tier decimated X 8 (c) third tier 
decimated X 16 (d) fourth tier decimated X 32. 
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Lapladan Pyramid [level two] 
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Figure 8 Laplacian pyramid generated for source image Figure 3 [cr = 1.5]. (a) 
Base image decimated X 4 (b) second tier decimated X 8 (c) third tier 
decimated X 16 (d) fourth tier decimated X 32. 
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Figure 9 Laplacian pyramid generated for target image Figure 3 [a = 1.5]. (a) 
Base image decimated X 4 (b) second tier decimated X 8 (c) third tier 
decimated X 16 (d) fourth tier decimated X 32. 
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Kohorten Network Generated Binary Mask Kohonen Network Generated Binary Mask 
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Figure 10 Binary masks and segmented breast images for two different screenings 
[generated by Kohonen Neural Network], (a) Binary mask for previous 
mammogram (b) binary mask for current mammogram (c) previous 
breast structure extracted from background (d) current breast structure 
extracted from background. 
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Figure 11 Mammograms segmented using a Kohonen Neural Network with 25 
nodes in the competitive layer. Segmentation shows variations in image 
intensity corresponding to regions of different density (a) Mammogram 
from previous screening (b) mammogram from current screening (c) seg- 
mented version of image in upper left panel (d) segmented version of 
image in upper right panel. 
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Figure 12 Comparison of Kohonen and Fuzzy C-Means (FCM) segmentation 
methods. Source and target mammogram images are segmented into 
8 regions using single level, (a) Source image segmented with Kohonen 
method (b) target image segmented with Kohonen method (c) source 
image segmented with FCM method (d) target image segmented with 
FCM. 
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Figure 13 Comparison of Kohonen and Fuzzy C-Means (FCM) segmentation 
methods. Source and target mammogram images are segmented into 
8 regions using two-level pyramid, (a) Source image segmented with 
Kohonen method (b) target image segmented with Kohonen method 
(c) source image segmented with FCM method (d) target image seg- 
mented with FCM. 
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Figure 14 Compaxison of Kohonen and Fuzzy C-Means (FCM) segmentation 
methods. Source and target mammogram images are segmented into 
8 regions using three-level pyramid, (a) Source image segmented with 
Kohonen method (b) target image segmented with Kohonen method (c) 
source image segmented with FCM method (d) target image segmented 
with FCM. 
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Figure 15 Comparison of Kohonen and Fuzzy C-Means (FCM) segmentation 
methods. Source and target mammogram images are segmented into 
8 regions using four-level pyramid, (a) Source image segmented with 
Kohonen method (b) target image segmented with Kohonen method 
(c) source image segmented with FCM method (d) target image seg- 
mented with FCM. 
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Figure 16 Comparison of Kohonen and Fuzzy C-Means (FCM) segmentation 
methods. Source and target mammogram images are segmented into 
8 regions using five-level pyramid, (a) Source image segmented with 
Kohonen method (b) target image segmented with Kohonen method 
(c) source image segmented with FCM method (d) target image seg- 
mented with FCM. 
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3.6   Optical Flow Computation 

After the two images have been grossly aligned, expanded into a multiscale 

representation, and segmented into homogeneous regions, the optical flow between 

the two images can be more reliably estimated. The approach taken in this thesis 

is based on a multiscale, cooperative computation paradigm. Since we are dealing 

with unknown, sometimes significant, inter-image differences, the multiresolution 

approach should be better able to cope with these challenges than its single-level 

model counterpart. The information provided by the Laplacian pyramid and that 

obtained by residual errors further enhance the effectiveness of a hierarchical strategy. 

3.6.1 Theoretical Background. As described in the previous chapter, es- 

timating the optical flow vector field can be considered a constrained optimization 

problem having the general form 

$ = I j      (Exu + Eyv + Etf + a2(u2
x + ul + v2

x + vl)dxdy (17) 
J   Jlmage 

where a represents the Lagrange multiplier constant. The spatio-temporal 

partial derivatives Ex,Ey, and Et are approximated using the four-point differencing 

method described in Horn and Schunck's original work (31). This thesis adopts the 

solution method developed by Hwang and Lee  (33) as outlined below. 

Since we are using a hierarchical approach, the additional constraint a2{u2
x + 

ul+vl+v2)dxdy can be taken to be the difference between the velocity vector at the 

current level k and the velocity vector projected from an adjacent level (i.e. k — 1 

or k + 1). Thus, we can model this constraint as a minimization of 

C(uk, vk) = s[{{{u™ - uk)2 + (vpr* - vk)2)) (18) 

where (uk, vk) denote the velocity vectors at level k and {u^0*, vpr0J) are the 

velocity vectors projected from an adjacent level. The minimization equation thus 
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becomes 

E(uk,vk)= [ f      (Exu + Eyv + Etf + a2{C(u\vk)}2)dxdy (19) 
J  JImage 

which in turn can be formulated as a set of Euler-Lagrange equations of the form 

{a2 + (Ek}uk + EkEkvk   =   oPvT0' - EkEk (20) 

EkEkuk + {a2 + (Ek}vk   =   aVro> - EkEk (21) 

by setting E(uk,vk) equal to 0. 

Hwang and Lee use the iterative Gauss-Seidel relaxation technique to solve the 

minimization equation. The iterative update equations are 

uk   =   UO-E£ (22) 
D 
P 

'yD 
vk   =   v0-Ek^- (23) 

where 

P   =   EkyT0i + Ek
yv*r°i + Ek (24) 

D   =   a2 + (Ek)2 + (Ek)2 (25) 

The update variables uk and vk are initialized to uproi and v**0*, the optical 

flow vectors computed at the previous level, to provide a good starting point for 

further refinement. 

3.6.2 Algorithm Dynamics. The coarse-to-fine computational strategy used 

by this system facilitates the progressive refinement of an initial guess. In Hwang 

and Lee's (33) implementation, the optical flow calculation from the next level above 
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serves as the regularization parameter required to make the problem well-posed. This 

design underlies the superior performance of the multiscale approach over Horn and 

Schunck's (31) single-scale approach. The proposed system can also implement true 

multigrid processing by projecting the residual from one level to the level above it 

where it can be used to speed convergence (19). Figure 18 depicts an example of the 

residual error between the optical flow computed at two different levels of the image 

pyramid. It represents the high frequency component of the computed flow field. 

Figure 17 shows the final optical flow fields computed at each level of a four-level 

image pyramid. 

3.7 Image Warping 

The optical flow estimate can be used directly to create a warped version of 

the source image. This non-linear transformation can be accomplished using the 

equation 

Imagewarped(i,j) = Imagesource(i - Au,j - Av). (26) 

Since the transformed image coordinates (i — Au, j — Av) will be real-valued 

and therefore fall outside the standard integer grid, the actual intensity values must 

be interpolated from the source image. This system uses a standard bilinear inter- 

polation. 

3.8 Evaluation 

The primary evaluation criterion is the similarity measure between the trans- 

formed image and the target image. Although many matching routines use some 

type of correlation measure to estimate the similarity between two images or image 

regions, it is not used by this system because it is unreliable when any significant 

amount of non-rigid motion is present.  Instead, the optical flow estimate itself is 
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used as a measure of the remaining difference between the two images. Since the 

original motivation behind using optical flow was to have it estimate the inter-image 

disparity, it seems reasonable that the optical flow residual would likewise be a good 

estimate of any remaining intensity difference. The lower the post-alignment optical 

flow, the lower the dissimilarity (i.e. better match) between the two image segments. 

Comparison of the two corresponding Laplacian images offers a qualitative 

sense of how well the images match. As Barron et al. (3) point out in their 

evaluation of optical flow methods, the Laplacian pyramid "helps to enhance image 

structure, such as edges, that is often thought to be important". Whereas such 

features are normally subjected to blurring in a Gaussian pyramid, they can become 

more prominent in the Laplacian pyramid. If similar structural features can be found 

in the warped and target images, we can better evaluate the success of the matching 

procedure. 

3.9   Summary 

This chapter presented a mammogram registration technique based on opti- 

cal flow estimates in a multiresolution framework. After preprocessing, the images 

undergo coarse alignment to eliminate major positional and orientation differences 

between them. The two breast structures are then segmented from the background 

image for improved matching accuracy and computational performance. Next, a 

Gaussian pyramid of four to five levels, depending on the degree of disparity between 

the images, is constructed. A multiscale algorithm then computes the apparent dif- 

ference between the images using an iterative coarse-to-fine approach. Optical flow 

estimates generated at a given level become the starting point for higher resolution 

estimates at the next level down the pyramid. The computed velocity field is used 

to transform the source image into one more closely resembling the target image. 

Finally, the disparity between the warped image and the target is evaluated. 
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a006bl0u.mam Optical Flow [iteration 1] 

(b) 
a006bl0u.mam Optical Flow [iteration 1] 

(c) (d) 

Figure 17 Optical Flow Pyramid: Decomposition of the optical flow estimate into 
four levels. The calculated flow at level fe+1 becomes the initial estimate 
for refining the estimate at level k. (a) Bottom level (finest resolution) 
(b) second level (c) third level (d) top most level (coarsest resolution). 
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Figure 18 Residual error at two levels of the Gaussian pyramid [Y component 
only], (a) Residual computed at level two (b) residual computed at 
level three. 
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IV.   Results 

This chapter discusses results from applying the proposed mammogram registration 

system to synthetic and real images. 

4-1   System Testing 

It's important to evaluate the accuracy of the proposed registration method 

before relying on matching results using real mammograms. Since it is difficult to 

precisely determine the expected results, the performance of two different optical 

flow estimation techniques will be analyzed. Single-level estimation will be tested 

using the Horn and Schunck (31) method, while the multi-resolution approach will 

be represented by Hwang and Lee's (33) Gaussian pyramid scheme. Although not 

exhaustive, the tests are designed to evaluate how well the proposed method can be 

expected to perform on real x-ray images. 

4.I.I Image Preparation. A small mammogram region possessing signif- 

icant texture variation was selected to be the source image. The image patch is 

presmoothed using the Gaussian filter described in Chapter III with a 4 x 4 kernel 

and a standard deviation of 1.5 pixels. Image intensities were then quantized to fall 

in the range 0 to 255. 

4-1.2 Test Case Generation. Seven different tests were conducted on image 

pairs having known differences. The first two test cases evaluate the ability of the 

optical flow module to recover translational motion. Two target images are tested: 

one shifted down by five pixels relative to the source image, and another shifted to 

the right again by five pixels. For the third test, the source image is rotated about 

the center pixel. Since the registration method will be required to perform nonlinear 

mapping, the ability to detect rotational deformations is critical to the success of 

this system. A similar test assesses how well the system can track movement of a 

48 



edge contour. This test will simulate matching dissimilar skin edges separated by 

short distances. Finally, the reaction to finding an object on the target image not 

present on the source image is investigated. This capability is important to both 

image mapping and subsequent tumor detection. 

A final test was constructed to evaluate how well the system can capture the 

actual optical flow between two images. This test was designed to mimic the degree 

of complexity the system would be expected to handle in an operational setting. 

The source image in this case was an actual mammogram downsampled by a factor 

of 16 to simplify analysis. This source image was then subjected to a known affine 

transformation using the technique discussed in the global alignment section. The 

system then had to compute the flow between the original image (source) and the 

warped image (target). Ideally, the computed flow would be very similar to the flow 

defined under the known affine transformation. 

4.1.3 Test Case Execution. The regularization parameter a was set to 10, 

and the target error rate for convergence was set to 0.05, for all test cases. The title 

of each velocity flow diagram includes the total number of iterations required for 

convergence. 

Test Case Specifications 
Test Case Description Parameters 

Horizontal Translation shift of target relative to source 5 pixels 
Vertical Translation shift of target relative to source 5 pixels 

Rotation rotation of source about the center 10 degrees 
Translation and Rotation horizontal shift and rotation 5 pixels; 10 degrees 

Contour Tracking shift of curved target boundary 5 pixels 
Foreign Object Insertion superposition of a box onto source 10 X 10 pixels 

Table 5     Specifications for the six validation test cases. 

4.1.4    Test Evaluation.       The results of the six tests are displayed in Fig- 

ures 19 through 24. The most apparent difference 
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In general, the two methods produced remarkably similar results. Two main 

observations can be made about the comparative performance of the two methods. 

First, Horn and Schunck's gradient-based method invariably requires almost twice as 

many iterations to converge as Hwang and Lee's multiresolution approach. Second, 

the Horn and Schunck method is not quite as consistent as Hwang and Lee's when 

compared to the expected outcome. For example, almost all vector arrows in the 

translation cases are parallel in the Hwang and Lee method, whereas a significant 

percentage show distinct deviation in the Horn and Schunck method. In the contour 

tracking test, Horn and Schunck's method provided good estimates at boundary 

regions only, while its competitor generated a consistent velocity field across the 

entire image. The combined accuracy and efficiency favor a multiresolution approach 

for a system as computationally intensive as the one proposed in this thesis. 

The preferred multiresolution method was used in executing the last test case 

more closely simulating actual operating conditions. Figure 25 presents the results 

of this test. The computed optical flow is very similar to the true flow. The main 

differences occur in regions of high homogeneity. Gradient-based methods, such as 

the one used here, generally find such homogeneous areas ambiguous and difficult to 

compute accurately. 

4-2   Mammogram Registration 

4.2.1 Experimental Format. The primary focus of this thesis is on the 

registration of mammograms taken of the same breast at different times. Therefore, 

registration experiments conducted in this section are restricted to available temporal 

sequences of images. To keep the analysis focused and easy to follow, this section 

adopts a case study approach. The two cases presented register a time sequence 

of four mammograms for the same women. The first case (see Figure 26) aligns 

four craniocaudal views for the right breast, while the second case (see Figure 35) 

aligns four mediolateral oblique views for the same breast. The mammograms for 
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Figure 19 Comparison of two optical flow computation methods for image transla- 
tion test case, (a) Original image (b) original image shifted to the right 
by 5 pixels (c) Horn and Schunck gradient method (d) Hwang and Lee 
multiresolution method. 
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Figure 20 Comparison of two optical flow computation methods for image trans- 
lation test case, (a) Original image (b) original image shifted down by 
5 pixels (c) Horn and Schunck gradient method (d) Hwang and Lee 
multiresolution method. 

52 



Source Image For Optical Flow Test 

10 

15 

20 

25 

 I 

Target Image For Optical Flow Test 
"TV ■:![;»" 

(a) (b) 
Optical Flow Field [Horn and Schunck - 74 iterations] Optical Flow Field [Hwang and Lee - 42 iterations] 

^*>»^*>*--'-*-*-- — — — — — — . ********** ****^ — — — — — — 
*"****0********** — — — — - ********»*******> «* .. .. - „ 
ss**************.*. - 

. sss****f** + + --m 

*t>l***** + + + ***m 

.///////***»--. 

— — — -•>* ■• s * s. \ \ s s \ ss\ 
--••■»****% \\\\VN»k^S 

••■»****%»**, t\tlV 
 »*»».»» v i v h 
 * » » » t • » * * t * 
 ••■••••ttiii 
 Illtlttti 

 tlitiliiid 
••••'tiiiiiittiti 
••••'*t*it4444444 

25- ~~--:r-r--:-:-:-  

20 

15 

10 

5 

0 

•»•»•vswwwss 
NWWWWSW 
~    *»• V ^ *» ^ N % Nt^^N 

\\\\\\\\\\\ 
> vu\\ \\\\\ 
«   »   »   *.   ».   V  \  \  *  v \ 
I * . 1 » \ \ \ \ \ \ 
t t 4 t \ \ \ , \ \ \ 
*   I   *   »   *   1   I   I   1   »   * 
i * i i t t * J I I l 
i t t t t t 4 t I i 4 
1*444444444 

iiiiiiiiilt 
itiiiiffiii 
/ / / //vvvvv i ///?vvv v v Ji 

(c) (d) 

Figure 21 Comparison of two optical flow computation methods for image rotation 
test case, (a) Original image (b) original image rotated counterclockwise 
by 10 degrees (c) Horn and Schunck gradient method (d) Hwang and 
Lee multiresolution method. 
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Figure 22 Comparison of two optical flow computation methods for image transla- 
tion and rotation test case, (a) Original image (b) original image shifted 
down by 5 pixels (c) Horn and Schunck gradient method (d) Hwang and 
Lee multiresolution method. 
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Figure 23 Comparison of two optical flow computation methods for image with 
box superimposed, (a) Original image (b) original image shifted down 
by 5 pixels (c) Horn and Schunck gradient method (d) Hwang and Lee 
multiresolution method. 
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Figure 24 Comparison of two optical flow computation methods for image contour 
tracking, (a) Original image (b) original image shifted down and to the 
right by 10 pixels (c) Horn and Schunck gradient method (d) Hwang 
and Lee multiresolution method. 
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Figure 25 Comparison of computed optical flow with true optical flow, (a) Source 
image (b) target image (c) actual optical flow field (d) computed optical 
flow field using Hwang and Lee multiresolution method. 
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each registration case are arranged from (a) to (d) by date of screening in ascending 

order. Figures 27 and 28 are examples of the Gaussian and Laplacian pyramids 

constructed for each of the images in preparation for the alignment process. All 

images have been enhanced using histogram equalization to make internal structure 

easier to identify. 

4-2.2 Results Format. The results of each registration set are displayed in 

a four-panel graphic. The upper left and right panels show the source and target 

images, respectively. The bottom left panel shows the final optical flow field for 

level three of the Gaussian pyramid. This level was chosen primarily because it is 

easy to visualize on the printed page. Figure 17 shows what all four optical flow 

levels look like for an example registration session. The Laplacian image for the 

first pyramid level is included to help validate the results of the alignment. Since 

Laplacian images typically enhance structural features at the appropriate scale, they 

are useful in matching features between two images and thus evaluating registration 

performance. 
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Figure 26 Temporal sequence of four mammograms taken during different screen- 
ings. These images are used for individual two-image matches in the 
next three case studies. All images are craniocaudal views of the left 
breast. The sequence (a)-(d) represents the order in which the mammo- 
grams were taken, with (a) being the earliest and (d) being the latest. 

59 



Gaussian Pyramid [level one] Gaussian Pyramid [level two] 

100    200    300    400    500 

(a) 
Gaussian Pyramid [level three] 

20 40 60 80 100 120 

(c) 

50  100 150 200 250 

(b) 
Gaussian Pyramid [level four] 

(d) 

Figure 27 Gaussian pyramid constructed from original mammogram [<r=1.5]. (a) 
Base image decimated X 4 (b) second tier decimated X 8 (c) third tier 
decimated X 16 (d) fourth tier decimated X 32. 
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Figure 28 Lapladan pyramid constructed from original mammogram [(7=1.5]. (a) 
Base image decimated X 4 (b) second tier decimated X 8 (c) third tier 
decimated X 16 (d) fourth tier decimated X 32. 
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4.2.3   Registration Case 1. 

4-2.3.1 Key Factors. Figure 26 displays the four mammograms 

comprising registration case 1. All images are craniocaudal (CC) views. The global 

alignment stage is not required for these four images due to the absence of any 

significant translation or rotation difference between them. 

4.2.3.2 Registration Results. The registration system has no diffi- 

culty lining up the breast outline in any of the three image sets. Also, the internal 

structures (based on intensity characteristics only) correspond well between images. 

Case 1.1 shows the most difference in the upper third of the images. The computed 

optical flow field is particularly prominent in that region and weak everywhere else. 

The flow field in case 1.2 clearly demonstrates the ability of the system to detect 

translational motion between two images. The smooth vertical flow is consistent with 

a downward shift in the target image as can be readily by comparing the two breast 

outlines. Case 1.2 presents a challenge because it is not at all clear whether the dark 

patch in the lower left quadrant is due to tissue compression of an artifact of poor 

imaging. Since the registration procedure cannot differentiate either, it attempts to 

map the dark region in the source and target images. The resulting warped image 

displayed in panel (d) matches up well in the upper half of the images. In each 

case, the system computed flow fields consisting of both linear (translational) and 

non-linear (distortion) components. It is precisely this ability to deal with regional 

distortion differences, such as compression and expansion, that makes the approach 

so appealing and potentially useful. 
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Figure 29 Case 1.1 Registration of two mammograms taken at different times 
[craniocaudal view]. The optical flow field shown corresponds to level 
2 of the Gaussian pyramid to facilitate viewing (a) Mammogram from 
previous screening (b) mammogram from current screening (c) optical 
flow field calculated from source image [in upper left panel] to target 
image [upper right panel] (d) mammogram from current screening. 
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Figure 30     Case 1.1 Lapladan images of the warped and target images, (a) Source 
image (b) target image (a) warped image from source (b) target image. 
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Figure 31 Case 1.2 Registration of two mammograms taken at different times 
[craniocaudal view]. The optical flow field shown corresponds to level 
2 of the Gaussian pyramid to facilitate viewing (a) Mammogram from 
previous screening (b) mammogram from current screening (c) optical 
flow field calculated from source image [in upper left panel] to target 
image [upper right panel] (d) mammogram from current screening. 
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Figure 32     Case 1.2 Laplacian images of the warped and target images, (a) Source 
image (b) target image (a) warped image from source (b) target image. 
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4.2-4   Registration Case 2. 

4.2.4.1 Key Factors. Figure 35 portrays the four mammograms used 

for registration case 2. Whereas the previous sets involved the craniocaudal view, 

case 2 deals with images taken from the medial-lateral oblique (MLO) view. In 

most MLO views, the pectoral wall can be clearly seen and can serve as an excellent 

registration landmark. A significant vertical shift is noticeable between the source 

and target images. This translation was not adjusted by the alignment module in 

order to assess the ability of the system to include such a shift in the computed 

optical flow field. 

4.2.4.2 Registration Results. In case 2.1, the pectoral wall protrudes 

deeper in the target image than it does in the source image. The computed flow field 

easily detects this strong intensity shift as seen in the strong translational response 

in the upper left of the flow field. The obvious global misalignment in case 2.1 

was purposely not handled by the alignment module to demonstrate the ability of 

the multiresolution algorithm to resolve large intensity shifts between images. The 

computed flow displays a strong vertical component in an attempt to compensate for 

the significant downward translation from source to target image. Closer inspection 

of the flow field shows that the algorithm is able to deal with both the relative 

vertical shift and inward compression as seen in the center right portion of the flow 

field. 

Case 2.2 is instructive because it shows how the system reacts when a signifi- 

cant portion of the source-target pair exhibit only minor differences, while elsewhere 

large differences are visible. As expected, the computed flow field is weak between 

the highly similar regions and strong between the regions exhibiting large intensity 

differences. Case 2.3 requires a large vertical downward shift and displacement of 

the pectoral wall to the left. 

67 



a006b20u.mam [Source Image] a006b30u.mam [Target Image] 

20 40 60 

(a) 
a006b20u jnam [Optical Flow Field] 

20 40 60 

(b) 
a006b20u.mam [Warped Image] 

20 40 60 

(c) (d) 

Figure 33 Case 1.3 Registration of two mammograms taken at different times 
[craniocaudal view]. The optical flow field shown corresponds to level 
2 of the Gaussian pyramid to facilitate viewing (a) Mammogram from 
previous screening (b) mammogram from current screening (c) optical 
flow field calculated from source image [in upper left panel] to target 
image [upper right panel] (d) mammogram from current screening. 
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Figure 34     Case 1.3 Laplacian images of the warped and target images, (a) Source 
image (b) target image (a) warped image from source (b) target image. 
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Figure 35 Temporal sequence of four mammograms taken during different screen- 
ings. These images are used for individual two-image matches in the 
next three case studies. All images are medial-lateral oblique views of 
the left breast. The sequence (a)-(d) represents the order in which the 
mammograms were taken, with (a) being the earliest and (d) being the 
latest. 
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Figure 36 Case 2.1 Registration of two mammograms taken at different times 
[mediolateral oblique view]. The optical flow field shown corresponds 
to level 2 of the Gaussian pyramid to facilitate viewing (a) Mammo- 
gram from previous screening (b) mammogram from current screening 
(c) optical flow field calculated from source image [in upper left panel] to 
target image [upper right panel] (d) mammogram from current screen- 
ing. 
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Figure 37     Case 2.1 Laplacian images of the warped and target images, (a) Source 
image (b) target image (a) warped image from source (b) target image. 
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Figure 38 Case 2.2 Registration of two mammograms taken at different times 
[mediolateral oblique view]. The optical flow field shown corresponds 
to level 2 of the Gaussian pyramid to facilitate viewing (a) Mammo- 
gram from previous screening (b) mammogram from current screening 
(c) optical flow field calculated from source image [in upper left panel] to 
target image [upper right panel] (d) mammogram from current screen- 
ing. 
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Figure 39     Case 2.2 Laplacian images of the warped and target images, (a) Source 
image (b) target image (a) warped image from source (b) target image. 
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Table 6 summarizes results for both case 1 and case 2 registration sets. The 

similarity metric between images is a sum of squared difference taken between each 

pixel intensity value in the first image and the corresponding pixel intensity value in 

the second image. Difference 1 measures the total intensity difference between the 

source and target image pair. The second measures the difference between the source 

and the warped image obtained from the source image, while the third measures the 

difference between the warped and target images. The pattern is clear: in each 

case, the difference between warped and target image is less than half the difference 

between source and target image pairs. This result shows that the match between 

warped and target images is better than between the original source-target image 

pair. 

4-3   Summary 

This chapter presents results obtained from test case simulations and the regis- 

tration of historical mammogram sets. The optical flow produced during the testing 

phase corresponded very well with expected test results. The multiresolution ap- 

proach in general proved superior to the single image method by achieving a higher 

degree of consistency and executing much faster. Acceptable optical flow estimates 

were obtained after one relaxation sweep (approximately 50 iterations). 

Results obtained from registering actual mammogram images were consistent 

with expected results. 
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Figure 40 Case 2.3 Registration of two mammograms taken at different times 
[mediolateral oblique view]. The optical flow field shown corresponds 
to level 2 of the Gaussian pyramid to facilitate viewing (a) Mammo- 
gram from previous screening (b) mammogram from current screening 
(c) optical flow field calculated from source image [in upper left panel] to 
target image [upper right panel] (d) mammogram from current screen- 
ing. 
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Figure 41     Case 2.3 Lapladan images of the warped and target images, (a) Source 
image (b) target image (a) warped image from source (b) target image. 
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Registration Results Summary 
Case/Set Iterations Difference 1 Difference 2 Difference 3 

1.1 55 6.04 4.04 2.9 
1.2 56 4.85 3.63 2.01 
1.3 51 5.25 3.81 2.17 
2.1 38 5.00 3.04 2.30 
2.2 34 3.31 2.15 1.40 
2.3 50 3.54 2.70 1.33 

Table 6 Summary of registration statistics. The first the difference between origi- 
nal image pair. The second is the between source image and warped image. 
The third is the difference between warped image and target image. All 
difference measures are sum of squares. 
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V.   Conclusion 

This chapter summarizes the proposed registration method, discusses contributions, 

and suggests possible avenues for future research. 

5.1   Summary 

Breast cancer is lethal disease, indiscriminately afflicting nearly two hundred 

thousand women in this country each year. Early detection of suspected cancerous 

growth is an important weapon in the fight against this deadly killer. Today's mam- 

mography screening procedures provide an effective means toward this end but in 

general fail to achieve the desired level of detection accuracy. Radiologists typically 

compare mammograms taken at different times to improve the likelihood that a can- 

cer will be noticed. Although computer-aided detection (CADx) are being developed 

to help the radiologist make a more informed decision, current systems are generally 

limited to single-image analysis. 

The image registration system developed in this thesis attempts to bridge the 

gap between the needs of the radiologist during a mammography screening and the 

capabilities of an automated assistant. Its primary purpose is to align two mam- 

mograms of the same breast so that the radiologist can make a direct comparison 

between a time sequence of images. Since it is often very difficult to establish struc- 

tural features in the image pair to facilitate a mapping between them, this system 

is designed not to rely on the availability of such landmarks. Instead, the proposed 

system compares regional intensity values and calculates the apparent motion be- 

tween source and target image. This computed optical flow field then forms the basis 

for a non-linear mapping between the two images. This transformation results in a 

warped version of the original source image which can be directly compared with 

the target image. Finally, the underlying architecture of the registration system is 
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based on a multiresolution computational model, significantly enhancing both the 

accuracy and efficiency of the matching process. 

The proposed system incorporates features to provide a robust registration 

result. Since many image pairs exhibit significant differences in the positioning 

and orientation of the breast structure, a global alignment module is included to 

correct for such differences prior to computing the mapping between the images. 

This module relies on a genetic algorithm to quickly and accurately search for an 

optimal global alignment. It requires no user intervention to perform the alignment 

task. A second module is provided to perform critical segmentation duties. This 

segmentation subsystem uses a neural network to partition each image into regions 

of high homogeneity. The module is designed to carry out two different segmentation 

tasks: 1) extraction of the breast structure from the surrounding background, and 

2) partitioning on the breast structure itself into regions of similar intensity. The 

segmented image can often help the radiologist interpret an image and facilitate 

identification of different tissue types. 

The initial performance of the system was evaluated on two sets of images 

taken of the same breast. Each set of images represented a historical sequence of 

mammograms taken at four different screenings. One set consisted of four cran- 

iocaudal views, while the other presented the complementary mediolateral oblique 

views. Several test cases where constructed and executed to evaluate system per- 

formance. Then a mapping between pairs of images (source and target) in each set 

was computed to obtain a warped source image. The system performed well even in 

the face of major differences between images. In all cases the breast contour of the 

warped and target images matched up very closely. The system demonstrated its 

proficiency at coping with distortion such as compression and expansion by generat- 

ing a non-linear optical flow field. In all cases, the sum-squared intensity difference 

between warped and target image pairs was always considerably less than the original 

difference between source and target images. 

80 



5.2 Contributions 

As a part of the effort to develop the mammogram registration system, three 

specific contributions can be highlighted: 

1. Application of optical flow and multiresolution computation to solve the mam- 

mogram correspondence problem 

2. Application of a genetic algorithm to find an optimal set of parameters for an 

affine transformation 

3. Development of a segmentation method based on the Kohonen neural network 

and multiresolution image decomposition 

5.3 Recommendations 

The research conducted in preparing this thesis does not purport to solve the 

mammogram correspondence problem. The task of bringing two images into com- 

mon alignment—especially images having significant differences—is a complex and 

perhaps unsolvable problem. The work presented here attempts only to provide some 

fresh ideas that might stimulate even better approaches. The system developed in 

this thesis should be improved and expanded to directly address cancer detection. 

Further insight into the problem might lead to a system capable of flagging poten- 

tial tissue abnormalities as its computes the optical flow field between two images. 

Much creative work remains toward the development of an intelligent, comprehensive 

approach to image comparison and abnormality detection. 
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